Agents and Cancer Development


Agents, Cancer Development, Drugs.

How to Cite

Rahimi, H. A. (2019). Agents and Cancer Development. American International Journal of Cancer Studies, 1(1), 19-26.


Population (epidemiological) and laboratory studies have led to the discovery of many potential environmental factors in the initiation, promotion and progression of cancer. Starting with Pott's observations in the 18th century, certain occupations have been associated with an increased risk of cancer development. The recognition of increased scrotal cancer in chimney sweeps due to coal and tar exposure was followed by an observation in a British factory that all men distilling 2-napthylamine developed bladder cancer.


Sack, D.A., C. Lyke, C. McLaughlin and V. Suwanvanichkij, 2001. Antimicrobial resistance in shigellosis, cholera and campylobacteriosis. WHO/CDS/CSR/DRS/2001.8, World Health Organization, Rome, Italy, pp: 1-51.

Robens, J.F., G.S. Dill, J.M. Ward, J.R. Joiner, R.A. Griesemer and J.F. Douglas, 1980. Thirteen-week subchronic toxicity studies of direct blue 6, direct black 38 and direct brown 95 dyes. Toxicol. Applied Pharmacol., 54: 431-442

Martin, C.N. and J.C. Kennelly, 1981. Rat liver microsomal azoreductase activity on four azo dyes derived from benzidine, 3,3’-dimethoxybenzidine or 3,3’-dimethoxybenzidine. Carcinogenesis, 2: 307-312

Chung, K.T., G.E. Fulk and M. Egan, 1978. Reduction of azo dyes by intestinal anaerobes. Applied Environ. Microbiol., 35: 558-562

Bos, R.P., W. van der Krieken, L. Smeijsters, J.P. Koopman, H.R. de Jonge, J.L.G. Theuws and P.T. Henderson, 1986. Internal exposure of rats to benzidine derived from orally administered benzidine-based dyes after intestinal azo reduction. Toxicology, 40: 207-213

Platzek, T., C. Lang, G. Grohmann, U.S. Gi and W. Baltes, 1999. Formation of a carcinogenic aromatic amine from an azo dye by human skin bacteria in vitro. Hum. Exp. Toxicol., 18: 552-559

Martin, C.N. and J.C. Kennelly, 1985. Metabolism, mutagenicity and DNA binding of biphenyl-based azodyes. Drug Metab. Rev., 16: 89-117

Levine, W.G., 1991. Metabolism of azo dyes: Implication for detoxication and activation. Drug Metab. Rev., 23: 253-309

Collier, S.W., J.E. Storm and R.L. Bronaugh, 1993. Reduction of azo dyes during in vitro percutaneous absorption. Toxicol. Applied Pharmacol., 118: 73-79

Shafeeque, S., S. Mohan and K.S. Manjunatha, 1999. Synthesis, analgesic and antiinflammatory activity of some 2-substituted amino-3-(Np-tolylcarboxamido)-4, 5-dimethyl thiophenes. Indian J. Heterocyclic Chem., 8: 297-300.

Dzhurayev, A.D., K.M. Karimkulov, A.G. Makhsumov and N. Amanov, 1992. Antibacterial activity of new thiophene derivatives. Khimiko-FarmatsevticheskiiZhurnal, 26: 73-75.

Singh, D., S. Mohan, P.C. Sharma and J. Sarvanan, 2007. Synthesis and evaluation of some novel piperidinothiophenes as potential antioxidant and anti-inflammatory agents. Acta Pharm. Sci., 49: 29-38.

Govindaswamy, P., S. Mohan and P.G. Rao, 1998. Synthesis and antifungal activity of some 2-substituted 5, 6 dimethyl thieno (2, 3-d) 3, 1-oxazin-4-ones. Indian J. Heterocycl. Chem., 7: 205-208.

Ferreira, I.C.F.R., M.J.R.P. Queiroz, M. Vilas-Boas, L.M. Estevinho, A. Begouin and G. Kirsch, 2006. Evaluation of the antioxidant properties of diarylamines in the benzo[b]thiophene series by free radical scavenging activity and reducing power. Bioorg. Med. Chem. Lett., 16: 1384-1387

Gadad, A.K., H. Kumar, C.J. Shishoo, I.M. Khazi and C.S. Mahajanshetti, 1994. Synthesis of some 2-aminoacetylamino-3-carbethoxy/anilido-4,5,6,7-tetrahydrobenzo[b] thiophenes for local anesthetic activity. Indian J. Chem. Soc., 33: 298-301.

Gillespie, E., K.W. Dungan, A.W. Gomoll and R.J. Seidehamel, 1985. Selected immunologic properties of tiprinast, a non-steroidal antiallergy agent. Int. J. Immunopharmacol., 7: 655-660

Elslager, E.F., P. Jacob and L.M. Werbel, 1972. Folate antagonists. 6. Synthesis and antimalarial effects of fused 2,4-diaminothieno[2,3-d]pyrimidines. J. Heterocycl. Chem., 9: 775-782

Mishra, R., K.K. Jha, S. Kumar and I. Tomer, 2011. Synthesis, properties and biological activity of thiophene: A review. Der PharmaChemica, 3: 38-54

Mishra, R., I. Tomer and S. Kumar, 2012. Synthesis and antimicrobial evaluation of novel thiophene derivatives. Der Pharmacia Sinica, 3: 332-336

Santagati, A., M. Modica, M. Santagati, A. Caruso and V. Cutuli, 1994. Synthesis of 2,3-dihydro-3-amino-6-phenyl-2-thioxothieno [2,3-d] pyrimidin-4 (1H)-one and of potential antiinflammatory agents 2-aryl-7-phenyl-3H, 9H-pyrimido [2,1-b]thieno-[2’,3’:4,5]]1,3,4] thiadiazin-9-ones. Pharmazie, 49: 64-65

Egan, D., R. O’Kennedy, E. Moran, D. Cox, E. Prosser and R.D. Thornes, 1990. The pharmacology, metabolism, analysis and applications of coumarin and coumarin-related compounds. Drug Metab. Rev., 22: 503-529

Borges, F., F. Roleira, N. Milhazes, L. Santana and E. Uriarte, 2005. Simple coumarins and analogues in medicinal chemistry: Occurrence, synthesis and biological activity. Curr. Med. Chem., 12: 887-916

Harvey, R.G., C. Cortez, T.P. Ananthanarayan and S. Schmolka, 1988. A new coumarin synthesis and its utilization for the synthesis of polycyclic coumarin compounds with anticarcinogenic properties. J. Organ. Chem., 53: 3936-3943

Kostova I., S. Raleva, P. Genova and R. Argirova, 2006. Structure-activity relationships of synthetic coumarins as HIV-1 inhibitors. Bioinorg. Chem. Applied, 10.1155/BCA/2006/68274

Moffett, R.S., 1964. Central nervous system depressants. VII.1 Pyridylcoumarins. J. Med. Chem., 7: 446-449

Musicki, B., A.M. Periers, P. Laurin, D. Ferroud and Y. Benedetti et al., 2000. Improved antibacterial activities of coumarin antibiotics bearing 5’,5’-dialkylnoviose: biological activity of RU79115. Bioorg. Med. Chem. Lett., 10: 1695-1699

Al-Haiza, M.A., M.S. Mostafa and M.Y. El-Kady, 2003. Synthesis and biological evaluation of some new coumarin derivatives. Molecules, 8: 275-286

Fylaktakidou, K.C., D.J. Hadjipavlou-Litina, E.K. Litinas and D.N. Nicolaides, 2004. Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr. Pharm. Des., 10: 3813-3833

Bucolo, C., K.W. Ward, E. Mazzon, S. Cuzzocrea and F. Drago, 2009. Protective effects of a coumarin derivative in diabetic rats. Invest. Ophthalmol. Vis. Sci., 50: 3846-3852

Paya, M., B. Halliwell and J.R.S. Hoult, 1992. Interactions of a series of coumarins with reactive oxygen species: Scavenging of superoxide, hypochlorous acid and hydroxyl radicals. Biochem. Pharmacol., 44: 205-214

Marshall, M.E., J.L. Mohler, K. Edmonds, B. Williams and K. Butler et al., 1994. An updated review of the clinical development of coumarin (1,2-benzopyrone) and 7-hydroxycoumarin. J. Cancer Res. Clin. Oncol., 120: S39-S42

Stanchev, S., G. Momekov, F. Jensen and I. Manolov, 2008. Synthesis, computational study and cytotoxic activity of new 4-hydroxycoumarin derivatives. Eur. J. Med. Chem., 43: 694-706

Fondjo, S.E., J. Tsemeugne, B.L. Sondengam, T. Oppenlaender and K.H. Wabo et al., 2011. Coupling of two diazotized 3-aminothieno[3,4-c]coumarins with aromatic amines. J. Hetero. Chem., 48:: 1295-1301

Fogue, P.S., P.K. Lunga, E.S. Fondjo, J.D.D. Tamokou and B. Thaddee et al., 2012. Substituted 2-aminothiophenes: Antifungal activities and effect on Microsporumgypseum protein profile. Mycoses, 55: 310-317

Fondjo, E.S., J. Tsemeugne, J.D.D. Tamokou, A.N. Djintchui, J.R. Kuiate and B.L. Sondengam, 2013. Synthesis and antimicrobial activities of some novel thiophene containing azo compounds. Heterocyclic Commun., 19: 253-259

Gewald, K., 1965. Heterocyclenaus CH-acidennitrilen, VII. 2-Amino-thiophene aus α-Oxo-mercaptanen and methylenaktivennitrilen. ChemischeBerichte, 98: 3571-3577

Ried, W. and E. Nyiondi-Bonguen, 1973. Uber die gemeinsameeinwirkung von schwefel and methylenaktivennitrilenoderammoniak auf 2-hydroxyacetophenon. Justus LiebigsAnnalen der Chemie, 1973: 134-140

Fondjo, E.S., D. Dopp and G. Henkel, 2006. Reactions of some anellated 2-aminothiophenes with electron poor acetylenes. Tetrahedron, 62: 7121-7131

Al-Saleh, B., M.M. Abdelkhalik, M.A. El-Apasery and M.H. Elnagdi, 2005. Studies with condensed thiophenes: Reactivity of condensed aminothiophenes toward carbon and nitrogen electrophiles. J. Chem. Res., 2005: 23-26

NCCLS., 1997. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically-fourth edition; approved standard. NCCLS Document M7-A4, National Committee for Clinical Laboratory Standards, Wayne, PA., USA., January 1997.

NCCLS., 1999. Methods for determining bactericidal activity of antimicrobial agents; approved guideline. CLSI Document M26-A, Vol. 19, No. 18, Clinical and Laboratory Standards Institute, Wayne, PA., USA., September 1999.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Download data is not yet available.